To page top

Reductions

For a reduction \(R\), we have

\[ (R) \; \frac{}{s \to_R t} \; ((s, t) \in R) \hspace{2em} (\text{abs}) \; \frac{s \to_R t}{\lambda x.s \to_R \lambda x.t} \\[3ex] (\text{left-app}) \; \frac{s \to_R t}{su \to_R tu} \hspace{2em} (\text{right-app}) \; \frac{s \to_R t}{us \to_R ut} \]

\[ (\text{refl}) \; \frac{}{s \to_R^= s} \]

\[ (\text{trans}) \; \frac{s \to_R^+ t \hspace{1.5em} t \to_R^+ u}{s \to_R^+ u} \]

\[ (\text{sym}) \; \frac{s =_R t}{t =_R s} \]

Alternative characterisations

\(\beta\)-reduction

\(\eta\)-reduction/expansion

Copyright © 2021 Chua Hou.