- [2.1] Analyses truth values of compound sentences wrt their constituents.
- Atomic propositions: true or false, independent. Content irrelevant.
- Logical connectives: connect sentences.
Syntax
- [2.2.1] Set of formulas \(\mathcal F(X)\) inductively defined over countably infinite set \(X\) of propositional variables.
- \(\textbf{true}\), \(\textbf{false}\) are formulas.
- Members of \(X\) are formulas.
- Negation \(\lnot F\) is formula.
- Conjunction \((F \land G)\) and disjunction \((F \lor G)\) are formulas.
- Subformulas: subtrees of syntax tree.
- [2.2.2] Derived connectives: macros, not part of syntax.
- \(\to\), \(\leftrightarrow\), \(\oplus\), \(\bigwedge_i\), \(\bigvee_i\)
- [2.3.3] Syntactically equivalent: \(F = G\) if they are same string.
Semantics
- [2.3.1] Definitions.
- Truth values \(\{0, 1\}\).
- Assignment \(\mathcal A: X \to \{0, 1\}\), extended inductively with the obvious semantics/truth tables to \(\mathcal A: \mathcal F(X) \to \{0, 1\}\).
- For formula \(F\) and assignment \(\mathcal A\)
- \(F\) holds under \(\mathcal A\)/\(\mathcal A\) is model of \(F\) if \(\mathcal A\llbracket F\rrbracket = 1\): \(\mathcal A \vDash F\).
- \(F\) satisfiable if holds under some \(\mathcal A\).
- \(F\) is valid/tautology if holds under all assignments.
- Entailment: \(S \vDash F\) if any \(\mathcal A\) satisfying all formulas in \(S\) also satisfies \(F\).
- Logically equivalent: \(F \equiv G\) if \(\mathcal A\llbracket F \rrbracket = \mathcal A\llbracket G \rrbracket\) for all \(\mathcal A\).
Boolean algebra
- [Slide 3.7] Boolean algebra: set \(A\) with
- Elements \(\textbf{true}, \textbf{false}\)
- Unary op \(\lnot\), binops \(\land, \lor\)
- Satisfies Boolean algebra axioms.
- [3.1.1] Boolean algebra axioms for \(\equiv\) listed in notes, from truth tables.
- De Morgan dual \(\overline F\) such that \(\overline F \equiv \lnot F\).
\[\begin{gathered}
\overline{\textbf{true}} = \textbf{false} \hspace{2em}
\overline{\textbf{false}} = \textbf{true} \hspace{2em}
\overline P = \lnot P \hspace{2em}
\overline{\lnot P} = P \\[0.5ex]
\overline{F \land G} = \overline F \lor \overline G \hspace{2em}
\overline{F \lor G} = \overline F \land \overline G \hspace{2em}
\overline{\lnot F} = \lnot \overline F
\end{gathered}\]
- [3.1.2] Substitution of \(F\) for instances of \(P\) in \(G\) written \(G[F/P]\).
- Substitution Theorem. If \(F \equiv F'\) and \(G \equiv G'\) then \(G[F/P] \equiv G'[F'/P]\).
Copyright © 2021 Chua Hou.