To page top

\(\Rightarrow\) Dasgupta, Papadimitriou, Vazirani 7.1.1/7.4/7.5/7.6.

Linear Programs

  • [9.10, 9.16] Primal formulation in standard maximum form
    • Maximisation
    • \(=\) becomes \(\leq\) and \(\geq\)
    • All constraints are \(\leq\)
    • All variables nonnegative

\[ \begin{array}{c l} \text{max} & c^\intercal x \\ \text{s.t.} & Ax \leq b \\ &x \geq 0 \end{array} \]

  • [9.16] Dual formulation in standard min form
    • [9.17] Weak duality: Values feasible in primal \(\leq\) values feasible in dual.
    • Strong duality: Both optimums equal.

\[ \begin{array}{c l} \text{min} & b^\intercal y \\ \text{s.t.} & A^\intercal y \geq c \\ &x \geq 0 \end{array} \]

Geometric view

Applications

Copyright © 2021 Chua Hou.